Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.106
1.
BMC Plant Biol ; 24(1): 309, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38649801

BACKGROUND: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs. RESULT: In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool). CONCLUSIONS: This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids.


Diacylglycerol O-Acyltransferase , Diatoms , Nicotiana , Diatoms/genetics , Diatoms/enzymology , Diatoms/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Nicotiana/genetics , Nicotiana/enzymology , Nicotiana/metabolism , Acyl Coenzyme A/metabolism , Plants, Genetically Modified , Triglycerides/biosynthesis , Triglycerides/metabolism , Eicosapentaenoic Acid/biosynthesis , Eicosapentaenoic Acid/metabolism , Fatty Acids, Omega-3/biosynthesis , Fatty Acids, Omega-3/metabolism , Metabolic Engineering
2.
Microb Biotechnol ; 17(5): e14470, 2024 May.
Article En | MEDLINE | ID: mdl-38683675

Avermectins (AVEs), a family of macrocyclic polyketides produced by Streptomyces avermitilis, have eight components, among which B1a is noted for its strong insecticidal activity. Biosynthesis of AVE "a" components requires 2-methylbutyryl-CoA (MBCoA) as starter unit, and malonyl-CoA (MalCoA) and methylmalonyl-CoA (MMCoA) as extender units. We describe here a novel strategy for increasing B1a production by enhancing acyl-CoA precursor supply. First, we engineered meilingmycin (MEI) polyketide synthase (PKS) for increasing MBCoA precursor supply. The loading module (using acetyl-CoA as substrate), extension module 7 (using MMCoA as substrate) and TE domain of MEI PKS were assembled to produce 2-methylbutyrate, providing the starter unit for B1a production. Heterologous expression of the newly designed PKS (termed Mei-PKS) in S. avermitilis wild-type (WT) strain increased MBCoA level, leading to B1a titer 262.2 µg/mL - 4.36-fold higher than WT value (48.9 µg/mL). Next, we separately inhibited three key nodes in essential pathways using CRISPRi to increase MalCoA and MMCoA levels in WT. The resulting strains all showed increased B1a titer. Combined inhibition of these key nodes in Mei-PKS expression strain increased B1a titer to 341.9 µg/mL. Overexpression of fatty acid ß-oxidation pathway genes in the strain further increased B1a titer to 452.8 µg/mL - 8.25-fold higher than WT value. Finally, we applied our precursor supply strategies to high-yield industrial strain A229. The strategies, in combination, led to B1a titer 8836.4 µg/mL - 37.8% higher than parental A229 value. These findings provide an effective combination strategy for increasing AVE B1a production in WT and industrial S. avermitilis strains, and our precursor supply strategies can be readily adapted for overproduction of other polyketides.


Acyl Coenzyme A , Ivermectin , Ivermectin/analogs & derivatives , Metabolic Engineering , Metabolic Networks and Pathways , Polyketide Synthases , Streptomyces , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Acyl Coenzyme A/metabolism , Acyl Coenzyme A/genetics , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/enzymology , Metabolic Networks and Pathways/genetics , Ivermectin/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
5.
Mol Metab ; 81: 101903, 2024 Mar.
Article En | MEDLINE | ID: mdl-38369012

Acetyl and other acyl groups from different short-chain fatty acids (SCFA) competitively modify histones at various lysine sites. To fully understand the functional significance of such histone acylation, a key epigenetic mechanism, it is crucial to characterize the cellular sources of the corresponding acyl-CoA molecules required for the lysine modification. Like acetate, SCFAs such as propionate, butyrate and crotonate are thought to be the substrates used to generate the corresponding acyl-CoAs by enzymes known as acyl-CoA synthetases. The acetyl-CoA synthetase, ACSS2, which produces acetyl-CoA from acetate in the nucleocytoplasmic compartment, has been proposed to also mediate the synthesis of acyl-CoAs such as butyryl- and crotonyl-CoA from the corresponding SCFAs. This idea is now widely accepted and is sparking new research projects. However, based on our direct in vitro experiments with purified or recombinant enzymes and structural considerations, we demonstrate that ACSS2 is unable to mediate the generation of non-acetyl acyl-CoAs like butyryl- and crotonyl-CoA. It is therefore essential to re-examine published data and corresponding discussions in the light of this new finding.


Acyl Coenzyme A , Lysine , Acetyl Coenzyme A , Acyl Coenzyme A/metabolism , Acetates , Histones
6.
Biochem Biophys Res Commun ; 704: 149588, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38422897

Very long-chain fatty acids (VLCFAs) are fatty acids with a carbon chain length greater than 18 carbons (>C18) and exhibit various functions, such as in skin barrier formation, liver homeostasis, myelin maintenance, spermatogenesis, retinal function, and anti-inflammation. VLCFAs are absorbed by dietary or elongated from endogenous hexadecanoyl acids (C16). Similar to long-chain fatty acid synthesis, VLCFAs elongation begins with acyl-CoA and malonyl-CoA as sources, and the length of the acyl chain is extended by two carbon units in each cycle. However, the VLCFAs elongation machinery is located in ER membrane and consists of four components, FA elongase (ELOVL), 3-ketoacyl-CoA reductase (KAR), 3-hydroxyacyl-CoA dehydratase (HACD), and trans-2-enoyl-CoA reductase (TECR), which is different with the long-chain fatty acid machinery fatty acid synthase (FAS) complex. Although the critical components in the elongation cycle are identified, the detailed catalytic and regulation mechanisms are still poorly understood. Here, we focused on the structural and biochemical analysis of TECR-associated VLCFA elongation reactions. Firstly, we identified a stable complex of human HACD2-TECR based on extensive in vitro characterizations. Combining computational modeling and biochemical analysis, we confirmed the critical interactions between TECR and HACD1/2. Then, we proposed the putative substrate binding sites and catalytic residues for TECR and HACD2. Besides, we revealed the structural similarities of HACD with ELOVLs and proposed the possible competition mechanism of TECR-associated complex formation.


Fatty Acid Desaturases , Fatty Acids , Humans , Male , Acyl Coenzyme A/metabolism , Carbon , Fatty Acids/metabolism , Hydro-Lyases/metabolism
7.
J Hum Genet ; 69(3-4): 125-131, 2024 Apr.
Article En | MEDLINE | ID: mdl-38228875

Lipid storage myopathy (LSM) is a heterogeneous group of lipid metabolism disorders predominantly affecting skeletal muscle by triglyceride accumulation in muscle fibers. Riboflavin therapy has been shown to ameliorate symptoms in some LSM patients who are essentially concerned with multiple acyl-CoA dehydrogenation deficiency (MADD). It is proved that riboflavin responsive LSM caused by MADD is mainly due to ETFDH gene variant (ETFDH-RRMADD). We described here a case with riboflavin responsive LSM and MADD resulting from FLAD1 gene variants (c.1588 C > T p.Arg530Cys and c.1589 G > C p.Arg530Pro, FLAD1-RRMADD). And we compared our patient together with 9 FLAD1-RRMADD cases from literature to 106 ETFDH-RRMADD cases in our neuromuscular center on clinical history, laboratory investigations and pathological features. Furthermore, the transcriptomics study on FLAD1-RRMADD and ETFDH-RRMADD were carried out. On muscle pathology, both FLAD1-RRMADD and ETFDH-RRMADD were proved with lipid storage myopathy in which atypical ragged red fibers were more frequent in ETFDH-RRMADD, while fibers with faint COX staining were more common in FLAD1-RRMADD. Molecular study revealed that the expression of GDF15 gene in muscle and GDF15 protein in both serum and muscle was significantly increased in FLAD1-RRMADD and ETFDH-RRMADD groups. Our data revealed that FLAD1-RRMADD (p.Arg530) has similar clinical, biochemical, and fatty acid metabolism changes to ETFDH-RRMADD except for muscle pathological features.


Iron-Sulfur Proteins , Lipid Metabolism, Inborn Errors , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Muscular Dystrophies , Oxidoreductases Acting on CH-NH Group Donors , Humans , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Acyl Coenzyme A/therapeutic use , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Iron-Sulfur Proteins/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Mutation , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Riboflavin/genetics , Riboflavin/metabolism , Riboflavin/therapeutic use
8.
Sci Rep ; 14(1): 19, 2024 01 02.
Article En | MEDLINE | ID: mdl-38167670

Long-chain acyl-CoAs (LC-acyl-CoAs) are important intermediary metabolites and are also thought to function as intracellular signaling molecules; however, the direct effects of LC-acyl-CoAs have been difficult to determine in real-time and dissociate from Protein Kinase A (PKA) signaling. Here, we examined the direct role of lipolysis in generating intracellular LC-acyl-CoAs and activating AMPK in white adipocytes by pharmacological activation of ABHD5 (also known as CGI-58), a lipase co-activator. Activation of lipolysis in 3T3-L1 adipocytes independent of PKA with synthetic ABHD5 ligands, resulted in greater activation of AMPK compared to receptor-mediated activation with isoproterenol, a ß-adrenergic receptor agonist. Importantly, the effect of pharmacological activation of ABHD5 on AMPK activation was blocked by inhibiting ATGL, the rate-limiting enzyme for triacylglycerol hydrolysis. Utilizing a novel FRET sensor to detect intracellular LC-acyl-CoAs, we demonstrate that stimulation of lipolysis in 3T3-L1 adipocytes increased the production of LC-acyl-CoAs, an effect which was blocked by inhibition of ATGL. Moreover, ATGL inhibition blocked AMPKß1 S108 phosphorylation, a site required for allosteric regulation. Increasing intracellular LC-acyl-CoAs by removal of BSA in the media and pharmacological inhibition of DGAT1 and 2 resulted in greater activation of AMPK. Finally, inhibiting LC-acyl-CoA generation reduced activation of AMPK; however, did not lower energy charge. Overall, results demonstrate that lipolysis in white adipocytes directly results in allosteric activation of AMPK through the generation of LC-acyl-CoAs.


Acyl Coenzyme A , Lipolysis , Mice , Animals , Acyl Coenzyme A/metabolism , AMP-Activated Protein Kinases/metabolism , Signal Transduction , Adipocytes, White/metabolism , 3T3-L1 Cells
9.
Microb Biotechnol ; 17(1): e14309, 2024 Jan.
Article En | MEDLINE | ID: mdl-37537795

As one of the main precursors, acetyl-CoA leads to the predominant production of even-chain products. From an industrial biotechnology perspective, extending the acyl-CoA portfolio of a cell factory is vital to producing industrial relevant odd-chain alcohols, acids, ketones and polyketides. The bioproduction of odd-chain molecules can be facilitated by incorporating propionyl-CoA into the metabolic network. The shortest pathway for propionyl-CoA production, which relies on succinyl-CoA catabolism encoded by the sleeping beauty mutase operon, was evaluated in Pseudomonas taiwanensis VLB120. A single genomic copy of the sleeping beauty mutase genes scpA, argK and scpB combined with the deletion of the methylcitrate synthase PVLB_08385 was sufficient to observe propionyl-CoA accumulation in this Pseudomonas. The chassis' capability for odd-chain product synthesis was assessed by expressing an acyl-CoA hydrolase, which enabled propionate synthesis. Three fed-batch strategies during bioreactor fermentations were benchmarked for propionate production, in which a maximal propionate titre of 2.8 g L-1 was achieved. Considering that the fermentations were carried out in mineral salt medium under aerobic conditions and that a single genome copy drove propionyl-CoA production, this result highlights the potential of Pseudomonas to produce propionyl-CoA derived, odd-chain products.


Intramolecular Transferases , Propionates , Propionates/metabolism , Acyl Coenzyme A/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Minerals
10.
Chembiochem ; 25(2): e202300673, 2024 01 15.
Article En | MEDLINE | ID: mdl-37994376

The in vitro synthesis of Coenzyme A (CoA)-thioester intermediates opens new avenues to transform simple molecules into more complex and multifunctional ones by assembling cell-free biosynthetic cascades. In this review, we have systematically cataloged known CoA-dependent enzyme reactions that have been successfully implemented in vitro. To faciliate their identification, we provide their UniProt ID when available. Based on this catalog, we have organized enzymes into three modules: activation, modification, and removal. i) The activation module includes enzymes capable of fusing CoA with organic molecules. ii) The modification module includes enzymes capable of catalyzing chemical modifications in the structure of acyl-CoA intermediates. And iii) the removal module includes enzymes able to remove the CoA and release an organic molecule different from the one activated in the upstream. Based on these reactions, we constructed a reaction network that summarizes the most relevant CoA-dependent biosynthetic pathways reported until today. From the information available in the articles, we have plotted the total turnover number of CoA as a function of the product titer, observing a positive correlation between both parameters. Therefore, the success of a CoA-dependent in vitro pathway depends on its ability to regenerate CoA, but also to regenerate other cofactors such as NAD(P)H and ATP.


Acyl Coenzyme A , NAD , Acyl Coenzyme A/metabolism , NAD/metabolism , Coenzyme A/metabolism
11.
Biosens Bioelectron ; 247: 115935, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38128319

Long-chain fatty acyl-CoAs (LCACoAs) are intermediates in lipid metabolism that exert a wide range of cellular functions. However, our knowledge about the subcellular distribution and regulatory impacts of LCACoAs is limited by a lack of methods for detecting LCACoAs in living cells and tissues. Here, we report our development of LACSerHR, a genetically encoded fluorescent biosensor that enables precise measurement of subtle fluctuations in the levels of endogenous LCACoAs in vivo. LACSerHR significantly improve the fluorescent brightness and analyte affinity, in vitro and in vivo testing showcased LACSerHR's large dynamic range. We demonstrate LACSerHR's capacity for real-time evaluation of LCACoA levels in specific subcellular compartments, for example in response to disruption of ACSL enzyme function in HEK293T cells. Moreover, we show the application of LACSerHR for sensitive measurement of elevated LCACoA levels in the livers of mouse models for two common metabolic diseases (NAFLD and type 2 diabetes). Thus, our LACSerHR sensor is a powerful, broadly applicable tool for studying LCACoAs metabolism and disease.


Biosensing Techniques , Diabetes Mellitus, Type 2 , Humans , Mice , Animals , Diabetes Mellitus, Type 2/metabolism , HEK293 Cells , Liver , Lipid Metabolism , Acyl Coenzyme A/metabolism
12.
J Am Chem Soc ; 145(49): 27149-27159, 2023 12 13.
Article En | MEDLINE | ID: mdl-38039527

In cells, a vast number of membrane lipids are formed by the enzymatic O-acylation of polar head groups with acylating agents such as fatty acyl-CoAs. Although such ester-containing lipids appear to be a requirement for life on earth, it is unclear if similar types of lipids could have spontaneously formed in the absence of enzymatic machinery at the origin of life. There are few examples of enzyme-free esterification of amphiphiles in water and none that can occur in water at physiological pH using biochemically relevant acylating agents. Here we report the unexpected chemoselective O-acylation of 1,2-amino alcohol amphiphiles in water directed by Cu(II) and several other transition metal ions. In buffers containing Cu(II) ions, mixing biological 1,2-amino alcohol amphiphiles such as sphingosylphosphorylcholine with biochemically relevant acylating agents, namely, acyl adenylates and acyl-CoAs, leads to the formation of the O-acylation product with high selectivity. The resulting O-acylated sphingolipids self-assemble into vesicles with markedly different biophysical properties than those formed from their N-acyl counterparts. We also demonstrate that Cu(II) can direct the O-acylation of alternative 1,2-amino alcohols, including prebiotically relevant 1,2-amino alcohol amphiphiles, suggesting that simple mechanisms for aqueous esterification may have been prevalent on earth before the evolution of enzymes.


Prebiotics , Water , Esterification , Acyl Coenzyme A/metabolism , Membrane Lipids , Amino Alcohols , Acylation
13.
Cell ; 186(26): 5812-5825.e21, 2023 12 21.
Article En | MEDLINE | ID: mdl-38056462

Acyl-coenzyme A (acyl-CoA) species are cofactors for numerous enzymes that acylate thousands of proteins. Here, we describe an enzyme that uses S-nitroso-CoA (SNO-CoA) as its cofactor to S-nitrosylate multiple proteins (SNO-CoA-assisted nitrosylase, SCAN). Separate domains in SCAN mediate SNO-CoA and substrate binding, allowing SCAN to selectively catalyze SNO transfer from SNO-CoA to SCAN to multiple protein targets, including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1). Insulin-stimulated S-nitrosylation of INSR/IRS1 by SCAN reduces insulin signaling physiologically, whereas increased SCAN activity in obesity causes INSR/IRS1 hypernitrosylation and insulin resistance. SCAN-deficient mice are thus protected from diabetes. In human skeletal muscle and adipose tissue, SCAN expression increases with body mass index and correlates with INSR S-nitrosylation. S-nitrosylation by SCAN/SNO-CoA thus defines a new enzyme class, a unique mode of receptor tyrosine kinase regulation, and a revised paradigm for NO function in physiology and disease.


Insulin , Oxidoreductases Acting on CH-CH Group Donors , Signal Transduction , Animals , Humans , Mice , Acyl Coenzyme A/metabolism , Adipose Tissue/metabolism , Insulin Resistance , Nitric Oxide/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism
14.
Nat Commun ; 14(1): 7599, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37989752

Nutrient availability is a major selective force in the evolution of metazoa, and thus plasticity in tissue function and morphology is shaped by adaptive responses to nutrient changes. Utilizing Drosophila, we reveal that distinct calibration of acyl-CoA metabolism, mediated by Acbp6 (Acyl-CoA binding-protein 6), is critical for nutrient-dependent tissue plasticity. Drosophila Acbp6, which arose by evolutionary duplication and binds acyl-CoA to tune acetyl-CoA metabolism, is required for intestinal resizing after nutrient deprivation through activating intestinal stem cell proliferation from quiescence. Disruption of acyl-CoA metabolism by Acbp6 attenuation drives aberrant 'switching' of metabolic networks in intestinal enterocytes during nutrient adaptation, impairing acetyl-CoA metabolism and acetylation amid intestinal resizing. We also identified STAT92e, whose function is influenced by acetyl-CoA levels, as a key regulator of acyl-CoA and nutrient-dependent changes in stem cell activation. These findings define a regulatory mechanism, shaped by acyl-CoA metabolism, that adjusts proliferative homeostasis to coordinately regulate tissue plasticity during nutrient adaptation.


Diazepam Binding Inhibitor , Drosophila , Animals , Acetyl Coenzyme A/metabolism , Diazepam Binding Inhibitor/metabolism , Drosophila/metabolism , Acyl Coenzyme A/metabolism , Protein Binding
15.
Int J Mol Sci ; 24(19)2023 Oct 03.
Article En | MEDLINE | ID: mdl-37834305

Fatty acid metabolism, including ß-oxidation (ßOX), plays an important role in human physiology and pathology. ßOX is an essential process in the energy metabolism of most human cells. Moreover, ßOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis, (b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of many other compounds, including N-acetylglutamate-an important regulator of urea synthesis. This review describes the current knowledge on the importance of the mitochondrial and peroxisomal ßOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- and ω- fatty acid oxidation are discussed.


Acyl Coenzyme A , Fatty Acids , Humans , Acyl Coenzyme A/metabolism , Fatty Acids/metabolism , Oxidation-Reduction , Liver/metabolism , Acetyl Coenzyme A/metabolism
16.
Int J Mol Sci ; 24(19)2023 Oct 06.
Article En | MEDLINE | ID: mdl-37834405

Thioesters of coenzyme A (CoA) carrying different acyl chains (acyl-CoAs) are central intermediates of many metabolic pathways and donor molecules for protein lysine acylation. Acyl-CoA species largely differ in terms of cellular concentrations and physico-chemical properties, rendering their analysis challenging. Here, we compare several approaches to quantify cellular acyl-CoA concentrations in normal and ischemic rat liver, using HPLC and LC-MS/MS for multi-acyl-CoA analysis, as well as NMR, fluorimetric and spectrophotometric techniques for the quantification of acetyl-CoAs. In particular, we describe a simple LC-MS/MS protocol that is suitable for the relative quantification of short and medium-chain acyl-CoA species. We show that ischemia induces specific changes in the short-chain acyl-CoA relative concentrations, while mild ischemia (1-2 min), although reducing succinyl-CoA, has little effects on acetyl-CoA, and even increases some acyl-CoA species upstream of the tricarboxylic acid cycle. In contrast, advanced ischemia (5-6 min) also reduces acetyl-CoA levels. Our approach provides the keys to accessing the acyl-CoA metabolome for a more in-depth analysis of metabolism, protein acylation and epigenetics.


Acyl Coenzyme A , Tandem Mass Spectrometry , Rats , Animals , Acetyl Coenzyme A/analysis , Chromatography, Liquid/methods , Acyl Coenzyme A/metabolism , Coenzyme A/analysis , Ischemia , Liver/metabolism
17.
Biochemistry ; 62(20): 2982-2996, 2023 10 17.
Article En | MEDLINE | ID: mdl-37788430

Paralogous proteins confer enhanced fitness to organisms via complex sequence-conformation codes that shape functional divergence, specialization, or promiscuity. Here, we dissect the underlying mechanism of promiscuous binding versus partial subfunctionalization in paralogues by studying structurally identical acyl-CoA binding proteins (ACBPs) from Plasmodium falciparum that serve as promising drug targets due to their high expression during the protozoan proliferative phase. Combining spectroscopic measurements, solution NMR, SPR, and simulations on two of the paralogues, A16 and A749, we show that minor sequence differences shape nearly every local and global conformational feature. A749 displays a broader and heterogeneous native ensemble, weaker thermodynamic coupling and cooperativity, enhanced fluctuations, and a larger binding pocket volume compared to A16. Site-specific tryptophan probes signal a graded reduction in the sampling of substates in the holo form, which is particularly apparent in A749. The paralogues exhibit a spectrum of binding affinities to different acyl-CoAs with A749, the more promiscuous and hence the likely ancestor, binding 1000-fold stronger to lauroyl-CoA under physiological conditions. We thus demonstrate how minor sequence changes modulate the extent of long-range interactions and dynamics, effectively contributing to the molecular evolution of contrasting functional repertoires in paralogues.


Diazepam Binding Inhibitor , Proteins , Diazepam Binding Inhibitor/genetics , Diazepam Binding Inhibitor/chemistry , Diazepam Binding Inhibitor/metabolism , Proteins/metabolism , Molecular Conformation , Acyl Coenzyme A/metabolism , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism
18.
Cell Rep ; 42(10): 113241, 2023 10 31.
Article En | MEDLINE | ID: mdl-37819759

Lysine succinylation is a subtype of protein acylation associated with metabolic regulation of succinyl-CoA in the tricarboxylic acid cycle. Deficiency of succinyl-CoA synthetase (SCS), the tricarboxylic acid cycle enzyme catalyzing the interconversion of succinyl-CoA to succinate, results in mitochondrial encephalomyopathy in humans. This report presents a conditional forebrain-specific knockout (KO) mouse model of Sucla2, the gene encoding the ATP-specific beta isoform of SCS, resulting in postnatal deficiency of the entire SCS complex. Results demonstrate that accumulation of succinyl-CoA in the absence of SCS leads to hypersuccinylation within the murine cerebral cortex. Specifically, increased succinylation is associated with functionally significant reduced activity of respiratory chain complex I and widescale alterations in chromatin landscape and gene expression. Integrative analysis of the transcriptomic data also reveals perturbations in regulatory networks of neuronal transcription in the KO forebrain. Together, these findings provide evidence that protein succinylation plays a significant role in the pathogenesis of SCS deficiency.


Mitochondria , Succinate-CoA Ligases , Humans , Animals , Mice , Mitochondria/metabolism , Acyl Coenzyme A/metabolism , Succinate-CoA Ligases/genetics , Succinate-CoA Ligases/metabolism , Mice, Knockout
19.
J Am Soc Mass Spectrom ; 34(11): 2567-2574, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37812744

Several analytical challenges make it difficult to accurately measure coenzyme A (CoA) metaboforms, including insufficient stability and a lack of available metabolite standards. Consequently, our understanding of CoA biology and the modulation of human diseases may be nascent. CoA's serve as lipid precursors, energy intermediates, and mediators of post-translational modifications of proteins. Here, we present a liquid chromatography-mass spectrometry (LC-MS) approach to measure malonyl-CoA, acetyl-CoA, and succinyl-CoA in complex biological samples. Additionally, we evaluated workflows to increase sample stability. We used reference standards to optimize CoA assay sensitivity and test CoA metabolite stability as a function of the reconstitution solvent. We show that using glass instead of plastic sample vials decreases CoA signal loss and improves the sample stability. We identify additives that improve CoA stability and facilitate accurate analysis of CoA species across large sample sets. We apply our optimized workflow to biological samples of skeletal muscle cells cultured under hypoxic and normoxia conditions. Together, our workflow improves the detection and identification of CoA species through targeted analysis in complex biological samples.


Acyl Coenzyme A , Malonyl Coenzyme A , Humans , Malonyl Coenzyme A/metabolism , Acetyl Coenzyme A/metabolism , Acyl Coenzyme A/chemistry , Acyl Coenzyme A/metabolism , Muscle Cells/chemistry , Muscle Cells/metabolism
20.
Int J Mol Sci ; 24(18)2023 Sep 12.
Article En | MEDLINE | ID: mdl-37762279

This review highlights the complex role of fatty acid ß-oxidation in brain metabolism. It demonstrates the fundamental importance of fatty acid degradation as a fuel in energy balance and as an essential component in lipid homeostasis, brain aging, and neurodegenerative disorders.


Acyl Coenzyme A , Neurodegenerative Diseases , Humans , Acyl Coenzyme A/metabolism , Fatty Acids/metabolism , Oxidation-Reduction , Brain/metabolism
...